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Ideal solidification of a liquid-metal boundary
layer flow over a conveying substrate
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(Received 26 May 2000 and in revised form 8 May 2001)

The ideal solidification problem of the two-dimensional boundary layer flow of
a superheated liquid-metal binary alloy over a conveying substrate is examined.
Analytical results for the velocities, the solute concentration and the temperature
field are found in the asymptotic limits of small Prandtl numbers and large Schmidt
numbers. The growth of the solidifying front is shown to follow the square-root law.

1. Introduction
In view of today’s scientific work, which is almost exclusively based on numeri-

cal calculations, the need of approximate analytical solutions is greater than ever,
especially as independent checks on the validity of numerical results. Exact and ap-
proximate analytical solutions describing the complex interactions between heat and
fluid flow accompanied by phase change are exceptionally rare. The primary diffi-
culties are due to the nonlinearity of the Navier–Stokes equations and the unknown
position of the solidifying interface. This rules out the use of the superposition prin-
ciple to build up complicated solutions from simple ones. This severely restricts our
scope for problems having particular simple geometries for which a similarity solution
exists. Consequently, analytical solutions to coupled solidification problems are most
likely to be found in cases where a certain similarity variable can be distinguished.

One of the few coupled solidification problems that admit a similarity solution is
the two-dimensional viscous stagnation flow against a plane solidification front for
which Bian & Rangel (1996) propose a quasi-steady solution. Another example is
presented by Löfgren & Åkerstredt (2000) where the stagnation-point flow against
a conveyed solidification front, appearing in connection with the direct strip casting
process, is considered. (The direct strip casting process was formerly called horizontal
belt strip casting in earlier papers by the author.)

Another solidification problem of central importance in the industrial process of
continuous strip casting is the boundary layer flow of a solidifying liquid metal over
a heat-extracting moving substrate. The liquid metal is here directed onto a conveyor
belt or a spinning chill-wheel by a nozzle. At the heat extracting moving boundary a
growing solidified shell of steady-state shape emerges that is continuously withdrawn
in the casting direction. The actual shape of the solidifying interface is controlled
primarily by the heat transfer and the velocity of the moving substrate. Analytical
treatment of this case was first considered by Katgerman (1980) and more recently
by Carpenter & Steen (1997) and Löfgren & Åkerstedt (2000, 2001).

In the present paper we wish to draw attention to a certain similarity solution
concerning the ideal solidification of a superheated liquid-metal boundary layer flow
over a horizontally moving substrate. In this solution we simultaneously solve the
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viscous, solute and thermal fields together with the growth of the solid phase. For
comparison and for later reference we here briefly sketch the corresponding Stefan
problem without superheat for which the heat and the fluid flow are completely
uncoupled.

Consider the two-dimensional problem of a liquid metal flow of zero superheat over
a horizontally moving substrate at constant temperature T0 and velocity V . Then in
Cartesian coordinates the heat equation is given by

V
∂Ts

∂x
= αs

{
∂2Ts

∂x2
+
∂2Ts

∂y2

}
, (1)

where x and y are the horizontal and vertical coordinates and αs is the thermal
diffusivity of the solidified metal.

The boundary conditions are

Ts(x, 0) = T0 and Ts(x, s(x)) = TI, (2)

where TI is the temperature of the solidifying interface, and the energy balance at the
solidifying interface y = s(x)

κsn̂ · ∇Ts = V∆hf
ds

dx
. (3)

Here n̂ is the unit normal vector of the interface, directed into the melt, κs the thermal
conductivity of solid metal, and ∆hf the latent heat of fusion per unit volume.

Introducing the similarity variable η = y/s(x), a self-consistent solution is found in
the limit x1/2 � Φ0(αs/V )1/2, that is

Ts(η) = T0 +
TI − T0

erf Φ0

erf (Φ0η), (4)

where the growth of the solidification front is

s(x) = 2Φ0(αsx/V )1/2. (5)

The solidification constant Φ0 is then defined by√
πΦ0 expΦ2

0 erf Φ0 = St, (6)

found by substitution of (4) and (5) into condition (3), where St = cs(TI −T0)/∆hf is
the Stefan number and cs = κs/αs the specific heat of the solid metal.

It is in fact in the introduction of the similarity variable η where the success of the
boundary layer analysis of the present paper rests. A natural question to be raised
at this point is how will the growth of the solidification front be influenced if a
superheated boundary layer flow sweeps the solidifying interface?

This paper is organized as follows: In § 2 we formulate the problem for the
ideal solidification of the liquid-metal boundary layer flow over a moving substrate,
concerning the velocity, solute and heat, and propose a square-root growth of the
solidifying front. In § 3 we present an asymptotic solution for the viscous boundary
layer flow in the limit of small Prandtl numbers. In § 4 we present an asymptotic
solution for the solute boundary layer in the limit of large Schmidt numbers where
the Prandtl number is proposed to be small but fixed. An asymptotic solution of
the thermal boundary layer problem in the limit of small Prandtl numbers, and the
thermal conduction through the solid phase is presented in § 5 and § 6, respectively. In
§ 7 the solidification constant is determined that thereby proves the proposed square
root growth to be consistent.
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Figure 1. Boundary layer flow over an ideal solidification front. θ and c are the dimensionless
temperature and solute concentration, respectively.

2. Problem formulation
In continuous strip casting, superheated liquid metal is fed through a nozzle onto

a moving substrate where heat is extracted and from which the resulting product is
collected. Some typical casting techniques are the direct strip casting process (DSC)
and spin casting, i.e. chill-block, planar-flow casting (PFC) and single roll casting.
For recent engineering advances in the DSC technique we refer to Nyström, Reichelt
& Dubke (2000), while Steen & Karcher (1997) review the spin casting techniques.
In contrast to the unidirectional solidification of binary alloys where the crystals are
grown by pulling the crystals at a steady velocity through a furnace which maintains
a controlled temperature profile in the melt and crystal (Kurz & Fisher 1992), the
crystals in continuous strip casting grow under varying conditions. These castings are
characterized by an approximately parallel film flow, excluding the narrow region at
the feeding point. At some distance downstream, the superheated melt reaches fusion
temperature and a time-independent solidification front emerges. Except for a small
region close to the feeding point, the heat and fluid flow are only weakly coupled
and interact primarily through the shape of the solidification front. The distributions
of heat, solute and velocity are here homogenous apart from thin boundary layers
close to the solidification front. It is the interactions of these boundary layers with
the solidifying interface that we will examine, see figure 1.

To approximate the real boundary layer and solidification problem we make the
following assumptions:

(i) Constant-temperature heat sink in perfect contact with the solidified metal.
This would be a reasonable assumption for large Newtonian heat transfer coefficients
or in the limit of large distances in the casting direction, see Löfgren & Åkerstedt
(2000).

(ii) All material properties are constant.
(iii) The metal solidifies with a constant solute concentration kC∗ (i.e. neglecting the

initial transient), where C∗ is the a priori unknown liquid interface concentration and
k is the equilibrium partition ratio. The concentration C∗ is determined as a part of
the solution of the solute boundary layer problem. The far-field solute concentration
is C0.

(iv) The interface is in thermodynamic equilibrium, meaning that the temperature
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across the interface is continuous with the constant interface temperature TI =
Tf +mC∗. Tf is the fusion temperature of the pure metal and m is the liquidus slope
(Kurz & Fisher 1992).

(v) No pressure gradient in the casting direction. This is valid for film flows with
a free-stream velocity U � (gh)1/2, where g is the acceleration due to gravity and h is
the height of the free surface.

(vi) The ratio between the velocities of the moving substrate and the free stream
V/U = β is Pr � β � Pr−1, where Pr = ν/αl is the Prandtl number. This is a
reasonable assumption for liquid metals where Pr is a small parameter, typically
between 0.1 and 0.01. (This restriction is only necessary when seeking asymptotic
solutions in the limit of small Prandtl numbers, where we consider the ratio β to be
of order unity.)

The mathematical problem is formulated in a Cartesian coordinate system (x, y),
with the x-coordinate in the casting direction and the y-coordinate normal to the
heat-extracting boundary; u and v are the corresponding velocity components. The
viscous boundary layer approximation is then given by

∂u

∂x
+
∂v

∂y
= 0, (7)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
, (8)

where ν is the kinematic viscosity.
Introducing the stream function ψ(x, y), such that u = ∂ψ/∂y and v = −∂ψ/∂x, the

viscous boundary layer equation becomes

∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2
= ν

∂3ψ

∂y3
. (9)

The solute and the thermal boundary layer equations are defined accordingly:

∂ψ

∂y

∂C

∂x
− ∂ψ

∂x

∂C

∂y
= D

∂2C

∂y2
, (10)

∂ψ

∂y

∂Tl

∂x
− ∂ψ

∂x

∂Tl

∂y
= αl

∂2Tl

∂y2
, (11)

where D and αl are the solute and thermal diffusivities of the liquid metal.
The heat equation in the solid phase is

V
∂Ts

∂x
= αs

∂2Ts

∂y2
. (12)

The boundary conditions are defined by

∂ψ

∂y
= V , ψ = Vs at y = s(x),

∂ψ

∂y
→ U as y →∞,

 (13)

C = C∗, D∇C · n̂ = V (1− k)C∗x̂ · n̂ at y = s(x),

C → C0. as y →∞,
}

(14)
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Ts = T0, at y = 0,

Tl = Ts = TI, at y = s(x),

Tl → TI + ∆T as y →∞,

 (15)

and the energy balance

n̂ · (κs∇Ts − κl∇Tl) = ∆hf
Ds

Dt
at y = s(x), (16)

where ∆T is the superheat and κl is the thermal conductivity of the liquid metal.
In the following analysis we will assume the growth of the solidification front to

have a square-root behaviour analogous to that found in the solution of the Stefan
problem described in the introduction. This means that we expect the growth to be
of the form

s(x) = 2Φ
(αsx
V

)1/2

for x1/2 � Φ(αs/V )1/2, (17)

where the solidification constant Φ is a free parameter left to be specified by the
solution of the complete problem.

3. The solution of the viscous boundary layer problem
Introduce the new similarity variable

η =
y

2Φ

(
V

αsx

)1/2

, (18)

with η = 1 at the interface. Note that this variable bears a striking resemblance to the
similarity variable used by Takeshita & Shingu (1983) in their study of the boundary
layer flow over a conveying substrate without solidification. The corresponding stream
function is of the form

ψ(x, y) = 2ΦU
(αsx
V

)1/2

f(η), (19)

where f is a dimensionless function. Substitution of (19) into (9) gives

Prf′′′ + 2
A2

β
ff′′ = 0, A2 = αslΦ

2; αsl = αs/αl (20)

where the primes denotes differentiation with respect to η. The boundary conditions
to be imposed on f, found by substituting (19) into conditions (13), are

f = f′ = β at η = 1 and f′ → 1 as n→∞. (21)

In finding a solution to (20) with conditions (21) we make use of the fact that the
Prandtl number is a small parameter in metallic systems, typically between 0.1 and
0.01, while considering A and β to be of O(1). Let us therefore seek an approximate
solution in the limit of small Prandtl numbers. In this limit, f exhibit a boundary
layer structure close to the interface η = 1. Hence, the growth of the viscous boundary
layer is much weaker than the growth of the solidification front.

Utilizing the method of matched asymptotic expansions, we assume an outer
solution of the form

fout(η;Pr) ∼ δ1(Pr)f1(η) + δ2(Pr)f2(η) + · · · as Pr → 0 with η > 0 fixed. (22)

The {δn} is an asymptotic sequence such that the fn are all of order unity in the
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outer region. By substituting expansion (22) into the full problem and taking the limit
Pr → 0, we obtain without loss of generality

δ1(Pr) = 1, (23)

and the first-order problem

f′′l = 0 where f′1 → 1 as η →∞. (24)

The solution to the first-order approximation is

f1(η) = η + a, (25)

where a is a constant left to be specified in the matching process with the inner
solution.

An obvious length scale of the inner problem is of course the boundary layer
thickness. Let this thickness be of order ε(Pr), where ε is a function that vanishes
as its argument tends to zero. The appropriate magnified coordinate is given by
ζ = (η − 1)/ε(Pr), where ε(Pr) is still to be determined.

Assume an inner expansion, valid within the boundary layer, of the form

fin(η;Pr) ∼ ∆1(Pr)F1(ζ) + ∆2(Pr)F2(ζ) + · · · as Pr → 0 with ζ > 0 fixed. (26)

Here {∆n} is an asymptotic sequence such that all Fn are of order unity in the
boundary layer, where ζ = O(1). By substituting expansion (26) into the full problem
and taking the limit Pr → 0, we obtain without loss of generality

∆1(Pr) = 1 and ∆2(Pr) = ε(Pr) =
β

2A2
Pr, (27)

and the sequence of differential equations

F
(3)
1 + F1F

(2)
1 = 0, F1(0) = β, F

(1)
1 (0) = 0, (28)

F
(3)
2 + F1F

(2)
2 = 0, F2(0) = 0, F (1)

2 (0) = β, (29)

where the index between the brackets represent differentiation with respect to ζ.
In the solution of the first-order problem we notice that ψ > 0 and bounded within

the boundary layer, cf. (19). Consequently, fin ∼ F1 must be > 0 and bounded
throughout the boundary layer. Then by rewriting the first-order differential-equation
into the differential-integral form

F
(1)
1 = F

(2)
1 (0)

∫ ζ

0

exp

(∫ σ

0

F1ds

)
dσ

we conclude that F (2)
1 (0) must be zero. Hence, the solutions to equations (28) and (29)

are given by

F1(ζ) = β, F2(ζ) = β(1 + b)ζ + b(e−βζ − 1), (30)

where b is a constant to be determined in the matching process.
Let us rewrite the outer solution (25) using the inner variable

fout = εζ + 1 + a, (31)

and match order by order with the inner solution

fin = β + β(1 + b)εζ + εb(e−βζ − 1), (32)
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in the limit εζ → 0 and ζ →∞. This gives

a = (β − 1)

(
1 +

ε

β

)
and b =

1− β
β

, (33)

where we let the second-order correction to the outer solution appear in the constant
a.

Finally, a uniformly valid composite expansion is determined, i.e.

f(η;Pr) ∼ η − 1 + β + Pr
β − 1

2A2

(
1− exp

(
−2A2

Pr
(η − 1)

))
+ O(Pr2). (34)

Using the composite expansion (34) the dimensionless horizontal and vertical velocity
components are given by

u

U
=

1

U

∂ψ

∂y
= f′ ∼ 1 + (β − 1) exp

(
−2A2

Pr
(η − 1)

)
+ O(Pr) as Pr → 0 (35)

and

v

U
= − 1

U

∂ψ

∂x
∼ Φ

( αs
Vx

)1/2 {ηf′ − f}

= Φ
( αs
Vx

)1/2

(1− β)

{
1− η exp

(
−2A2

Pr
(η − 1)

)
+ O(Pr)

}
as Pr → 0. (36)

In the forthcoming analysis we will need certain expansions of
∫
fdη, stated here

for future reference. The Taylor expansion at η = 1 (Pr fixed), using expression (34),
is ∫ η

1

fdη = β(η − 1) + 1
2
(η − 1)2 +

1

3Pr
A2(1− β)(η − 1)3 + HOT. (37)

The asymptotic expansion, using expression (34), is∫ η

1

fdη ∼ 1
2
(η − 1)2 + β(η − 1) + Pr

β − 1

2A2
(η − 1) + O(Pr2) as Pr → 0. (38)

4. The solution of the solute boundary layer problem
Introduce the similarity variable (18) and the dimensionless solute concentration

c =
C − C0

C∗ − C0

, (39)

assuming c = c(η). Substitution of expressions (19) and (39) into equation (10) yields

Pr

Sc
c′′ + 2

A2

β
fc′ = 0, (40)

where Sc = ν/D is the Schmidt number and the primes denotes differentiation with
respect to η. The boundary conditions to be imposed on c, found by substituting (39)
into conditions (14), are

c = 1 and c′ = −2A2 (1− k)C∗
C∗ − C0

Sc

Pr
at η = 1 and c→ 0 as η →∞, (41)
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provided x1/2 � Φ(αs/V )1/2 so that n̂ ∼ ŷ. The straightforward solution is

c(η;Pr, Sc) =1− I(η;Pr, Sc)

I(∞;Pr, Sc)
, where I(η;Pr, Sc) =

∫ η

1

exp

(
−2

A2

β

Sc

Pr

∫ ξ

1

fdσ

)
dξ,

(42)
with the a priori unknown liquid interface concentration C∗ given by

C∗ =
C0

1− 2A2(1− k)(Sc/Pr)I(∞;Pr, Sc)
. (43)

In real alloy systems the Schmidt number is large, typically between 10 and 100, so
in order to find an asymptotic expansion of the integral I(η;Pr, Sc) we may take the
limit Sc → ∞ with Pr small but fixed. In this limit the integrand rapidly goes to
zero even for η close to 1. This allows us to use Laplace method i.e. expanding the
exponent in its Taylor series (37), giving

I(η;Pr, Sc) ∼
∫ η

1

(
1− A2

β

Sc

Pr
(ξ − 1)2+ O

(
Sc

Pr2
(ξ − 1)3

))
exp

(
−2A2 Sc

Pr
(ξ − 1)

)
dξ

=
Pr

Sc

1− exp

(
−2A2 Sc

Pr
(η − 1)

)
2A2

+

(
Pr

Sc

)2
F(η; Sc/Pr)

8A4β

+O

(
Pr2

Sc3

)
as Sc→∞, (44)

where

F(η; Sc/Pr) = (ϕ2 + 2ϕ+ 2)e−ϕ − 2 = O(1), ϕ = 2A2 Sc

Pr
(η − 1). (45)

Thus the solute concentration is then described by

c(η; Sc/Pr) ∼ e−ϕ − Pr

Sc

ϕ(ϕ+ 2)e−ϕ

4A2β
+ O

(
Pr

Sc2

)
as Sc→∞. (46)

The influence of the viscous boundary layer flow is of O(Pr/Sc2) and therefore
negligible in this limit.

Bird, Stewart & Lightfoot (1960) conduct a similar analysis of the concentration
field in a gaseous boundary layer flow over a volatile solid plate that sublimes, under
steady conditions, into the unbounded stream. Physically this case is quite different
from ours; however the mathematical problem is largely the same.

Furthermore, the asymptotic expansion for the liquid interface concentration C∗ is
given by

C∗ = C0

(
1

k
− 1− k

2βA2k2

Pr

Sc
+ O

(
Pr

Sc2

))
as Sc→∞. (47)

This expansion should be compared to the liquid interface concentration C0/k that
appears for the well-known steady-state diffusion field ahead of a planar interface
moving at constant velocity (Kurz & Fisher 1992). We thereby conclude that the
ideally solidifying liquid-metal boundary layer flow will solidify at a lower solute
concentration than for the steady-state solidification of a planar interface moving at
constant velocity.
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5. The solution of the thermal boundary layer problem
Introduce the similarity variable (18) and the dimensionless liquid temperature

θl =
Tl − T0

TI − T0

, (48)

assuming θl = θl(η). Substitution of (19) and (48) into (11) yields

θ′′l + 2
A2

β
fθ′l = 0, (49)

where the primes denote differentiation with respect to η. The boundary conditions
to be imposed on θl , found by substituting (48) into conditions (15), are

θl = 1 at η = 1 and θl → 1 + ∆ as η →∞, (50)

where ∆ = ∆T/(TI−T0) is the dimensionless superheat. The straightforward solution
is

θl(η;Pr) = 1 +
∆

J(∞;Pr)
J(η;Pr), where J(η;Pr) =

∫ η

1

exp

(
−2

A2

β

∫ ξ

1

fdσ

)
dξ.

(51)
The asymptotic expansion of the integral J in the limit of small Pr is found using
(38), hence

J(η;Pr) ∼
∫ η

1

exp

(
−A

2

β

(
(ξ − 1)2 + 2β(ξ − 1) + Pr

(β − 1)

A2
(ξ − 1)

))
dξ

=
(πβ)1/2

2A
exp

(
Aβ1/2 + Pr

(β − 1)

2Aβ1/2

)2{
erf

(
A

β1/2
(η − 1 + β) + Pr

(β − 1)

2Aβ1/2

)
− erf

(
Aβ1/2 + Pr

(β − 1)

2Aβ1/2

)}
as Pr → 0. (52)

Thus the temperature field becomes

θl(η;Pr) ∼ 1 + ∆

erf

(
A

β1/2
(η − 1 + β) + Pr

(β − 1)

2Aβ1/2

)
− erf

(
Aβ1/2 + Pr

(β − 1)

2Aβ1/2

)
erfc

(
Aβ1/2 + Pr

(β − 1)

2Aβ1/2

)
as Pr → 0. (53)

It can readily be seen in expression (53) that the influence of the viscous boundary
layer flow, the term of O(Pr), is weak and therefore negligible in a first approximation.

6. The solution of the thermal problem in the solidified phase
Introduce the similarity variable (18) and the dimensionless temperature

θs =
Ts − T0

TI − T0

, (54)

assuming θs = θs(η). Substitution of (19) and (54) into (12) yields

θ′′s + 2Φ2ηθ′s = 0, (55)
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where the primes denote differentiation with respect to η. The boundary conditions
to be imposed on θs, found by substituting (54) into conditions (15), are

θs = 0 at η = 0 and θs = 1 at η = 1. (56)

The temperature distribution within the solid phase is

θs(η) =
erf(Φη)

erfΦ
, (57)

which of course is analogous to expression (4) in the introduction.

7. Determination of the solidification constant Φ
The solidification constant Φ can now be determined through the use of the energy

balance at the solidifying interface (16). Substituting the expressions (17), (48) and
(54) into condition (16) yields

θ′s(1)− κlsθ′l(1;Pr) = 2
Φ2

St
, κls = κl/κs (58)

provided x1/2 � Φ(αs/V )1/2 so that n̂ ∼ ŷ. From expressions (53) and (57) we get

θ′l(1;Pr) ∼ 2∆

(
αsl

πβ

)1/2
Φ exp (−Φ2αslβ)

erfc(Φ(αslβ)1/2)
+ O(∆Pr) as Pr → 0 (59)

and

θ′s(1) =
2√
π

Φ

erfΦ expΦ2
. (60)

Hence, in a first approximation with an error of O(∆Pr) we have

√
πΦ erf Φ expΦ2 = St− ∆Stκls

(
αsl

β

)1/2
erf Φ exp (Φ2(1− αslβ))

erfc (Φ(αslβ)1/2)
. (61)

It is interesting to note that equation (61) will give Φ > 0 for every ∆. Hence the
square root growth of the solidifying front is a direct consequence of the ideal cooling
assumption.

In real casting situations the dimensionless superheat ∆ is typically very much less
than unity. So, in order to make a first step in determining the effect of superheated
melt on the growth of the solidification front we may consider the limit ∆ → 0 and
assume the regular perturbation expansion

Φ = Φ0 + ∆Φ1 + · · · . (62)

Insertion of expansion (62) into (61) gives to the zeroth order the problem defined by
(6). The first-order correction is then

Φ1 = −κls
(
αsl

πβ

)1/2
St2

St+ 2Φ0(Φ0 + St)

exp (−αslβΦ2
0)

erfc (Φ0(αslβ)1/2)
. (63)

We hereby conclude that the influence of the viscous boundary layer, which is of
O(∆Pr), is negligible for the growth of the solidification front in the present application
of continuous casting. The solidification problem is therefore almost purely a matter
of decoupled heat and fluid flow.

To give a rough estimate of the solidification constants Φ0 and Φ1 we consider
liquid steel with the physical properties ∆hf ≈ 1× 109 J m−3, cs ≈ 5× 106 J m−3 K−1
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and κls ≈ αsl ≈ 1. Then, for a temperature difference of TI − T0 ≈ 1000 K between
the solidifying interface and the heat sink the Stefan number is about 5. Using (6)
and (63) the solidification constant Φ0 ≈ 1 while Φ1 takes values between −2 and −4
when 0.1 6 β 6 10.

8. Summary
In this paper we analyse the ideal solidification of a liquid-metal boundary layer

flow over a conveying substrate. This flow is of central importance in the industrial
process of continuous strip casting. The liquid metal is here directed onto a conveyor
belt or a spinning chill-wheel by a nozzle. At the heat-extracting moving boundary
a growing solidified shell of steady-state shape emerges that is initially swept by a
superheated boundary layer flow. It is the interaction between the viscous boundary
layer and the solute and temperature boundary layers accompanied by the phase
change that this paper concerns.

We show that the viscous, solute and thermal boundary layers can be described
by a single differential equation through the use of the similarity variable η = y/s(x),
where s is the thickness of the solidified phase. Analytic solutions are found in the
asymptotic limit of small Prandtl and large Schmidt numbers. These solutions are
useful as independent checks on the validity of numerical calculations and necessary
in the prediction of morphological instabilities of the solidifying interface, see the
review paper by Davis & Schulze (1996).

The solidification front is shown to follow the square-root law and a solidification
constant Φ is derived for general superheats. For weak superheats, such as appear
in real strip casting applications, the influence of the viscous boundary layer on the
growth is found to be negligible.

The author is grateful to Dr Hans O. Åkerstedt for his valuable comments and
suggestions on the manuscript. This research is supported by the Swedish Research
Council for Engineering Sciences (TFR).

REFERENCES

Bian, X. & Rangel, R. H. 1996 The viscous stagnation-flow solidification problem. Intl J. Heat
Mass Transfer 39, 3581–3594.

Bird, R. B., Stewart, W. E. & Lightfoot, E. N. 1960 Transport Phenomena. John Wiley & Sons,
New York, pp. 608–619.

Carpenter, J. K. & Steen, P. H. 1997 Heat transfer and solidification in planar-flow melt-spinning:
high wheelspeeds. Intl J. Heat Mass Transfer 40, 1993–2007.

Davis, S. H. & Schulze, T. P. 1996 Effects of flow on morphological stability during directional
solidification. Metall. Mater. Trans. A 27A, 583–593.

Katgerman, L. III 1980 Theoretical analysis of ribbon thickness formation during melt spinning.
Scripta Metall. 14, 861–864.

Kurz, W. & Fisher, D. J. 1992 Fundamentals of Solidification. Trans Tech Publications Ltd,
Switzerland.
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Löfgren, H. B. & Åkerstedt, H. O. 2001 Initial solidification in liquid metal film flow over a
moving boundary. Intl J. Heat Mass Transfer 44, 837–842.

Nyström, R., Reichelt, W. & Dubke, M. 2000 Strip casting experiences at MEFOS. Scand. J.
Metall. 29, 93–100.

Steen, P. H. & Karcher, C. 1997 Fluid mechanics of spin casting of metals. Ann. Rev. Fluid Mech.
29, 373–397.

Takeshita, K. & Shingu, P. H. 1983 An analysis of the ribbon formation process by the single
roller rapid solidification technique. Trans. Japan Inst. Metals 24, 529–530.


